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NOAA GLERL has routinely flown a hyperspectral imager to detect cyanobacteria harmful algal blooms
(cyanoHABs) over the Great Lakes since 2015. Three consecutive years of hyperspectral imagery over the Great
Lakes warn drinking water intake managers of the presence of cyanoHABs. Western basin imagery of Lake Erie
contributes to a weekly report to the Ohio Environmental Protection Agency using the cyanobacteria index
(CI) as an indicator of the presence of cyanoHABs. The CI is also used for the weekly NOAA NCCOS cyanoHAB
Lake Erie bulletin applied to satellite data. To date, there has not been a sensor comparison to look at the variabil-
ity between the satellite and hyperspectral imagery on a pixel-by-pixel basis, as well as a time scale comparison
between measurements from buoys and shipboard surveys. The spatial scale is a measure of size of a
cyanobacteria bloom on a scale of meters to kilometers. The change in the spatial scale or spatial variability has
been quantified from satellite and airborne imagery using a decorrelation scale analysis to find the point at
which the values are not changing or are not correlated with each other. The decorrelation scales were also ap-
plied to the buoy and shipboard survey data to look at temporal scales or changes in time on hourly to daytime
scales for blue-green algae, chlorophyll and temperature. These scales are valuable for ecosystem modelers and
for those initiating sampling efforts to optimize sampling plans and to infer a potential mechanism in an obser-
vational study from a synoptic viewpoint.
© 2019 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The phytoplankton community in the western basin of Lake Erie is
typically driven by a combination of physical and chemical processes
that are variable over wide-ranging scales of time and space including:
wind transport andmixing, climate variability, lake surface temperature
fluctuations and phosphorous loading. (Beletsky et al., 2017; Obenour
et al., 2014; Paerl and Huisman, 2009;Wynne et al., 2013) The coupling
between these physical, chemical and biological parameters is not easily
resolved by a single platform, especially in a turbid-shallowwater envi-
ronment such as Lake Erie with rapid fluctuations within hours to days.
NOAA's Great Lakes Environmental Research Laboratory (GLERL) in col-
laboration with the Cooperative Institute for Great Lakes Research
(CIGLR) are monitoring recurring cyanoHABS (cyanbacteria Harmful
Algal Blooms) with an extensive network of observational equipment
deployed to capture the variability of this dynamic system. This network
is used to understand the temporal and spatial scales related to
ander Woude).

. on behalf of International Associati
cyanoHAB development in order to predict the timing and extent of
cyanoHABs in the western basin of Lake Erie. The resulting information
products provide awareness of raw water condition to drinking water
intake managers in the western basin.

Weekly shipboard sampling provides the vertical coverage of the
water column during the cyanoHAB events but does not capture the
temporalfluctuations in higher and lower frequencies at a buoy location
or spatially frommultispectral satellite or airborne hyperspectral imag-
ery. The satellite and hyperspectral synoptic coverage are enhanced on
daily time scales with a combination of satellite and hyperspectral re-
mote sensing, where hyperspectral remote sensing adds the spatial
(1 m scales) and spectral coverage (100 s of channels/bands for the
wavelengths observed, 400–900 nm, 240 bands, 144 bands in the visible
spectrum and 96 bands in the infrared range) not observed by satellites
(300 to 1 km scales and 30–40 channels or bands). Buoy observations
afford the additional temporal coverage that satellite and hyperspectral
remote sensing is not able to provide due to fly over limitations and
adds the frequency needed to understandwhat is happening onminute
to hourly time scales. The combination of all of these platforms increases
the ability to predict the timing of cyanoHABs during the bloom season
and to adequately warn stakeholders.
on for Great Lakes Research. This is an open access article under the CC BY-NC-ND license
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Monitoring for CyanoHABS has been critical in the Great Lakes as
cyanotoxins are potentially released in areas such as Lake Erie, Saginaw
Bay and Green Bay. In the Great Lakes the prevalent HABs are composed
of cyanobacteria, commonly known as blue-green algae and are typi-
cally from the genera Microcystis (specifically Microcystis aeruginosa),
Dolichospermum and Planktothrix (Davis et al., 2009, 2015). The HSI
(Hyperspectral Imager) has been flown weekly by NOAA GLERL during
the past three years, contributed to early warning and detection of
CyanoHABs for potential health risks to humans and animals through
recreational activities and municipal drinking water. CyanoHABs are a
common occurrence in the western basin of Lake Erie and are driven
by agricultural runoff in this shallow lake (Bridgeman et al., 2012;
Michalak et al., 2013). A phytoplankton bloom is defined not by the
level of abundance, but whether it has harmful consequences
(Smayda, 1997). The annual occurrence of potentially harmful algal
blooms in thewestern basin of Lake Erie is of greatest concern tomunic-
ipal water intake facilities.

The CyanoHABs in Lake Erie have spurred many studies in regard to
forecasting the timing drivers and peak of the bloom (Budd et al., 2001;
Ho and Michalak, 2015; Michalak et al., 2013; Stumpf et al., 2012;
Wynne et al., 2013, 2010, 2008; Wynne and Stumpf, 2015). Sampling
schemes for the hyperspectral flyovers, shipboard sampling and instru-
mentation on the buoys are optimally designed to best capture the
bloom and physical parameters if the time scales of the phytoplankton
response to physical processes are known aswell as the spatial variabil-
ity of these parameters (buoy temperature, winds, blue-green algae and
chlorophyll). The goal of this research is to identify the variability and
correlation between biological and physical parameters throughout
the 2017 field season with buoy, shipboard, satellite and hyperspectral
data with a particular focus on NOAA Alliance for Coastal Technologies
(ACT) efforts underway on August 16, 2017.

Methods

Study area - western basin of Lake Erie

Lake Erie has experienced episodic cyanoHAB events since the 1960s
with resurgence in the 1990s as a possible result of the introduction of
the invasive dreissenid mussels which exhibit selective feeding behav-
ior (Budd et al., 2001; Vanderploeg et al., 2001). In the 1970s actions
were put in place under the Great Lakes Water Quality Agreement
(GLWQA) that resulted in reduced phosphorous loads, the primary
driver of the seasonal algal growth, into the lake (Bruce and Higgins,
1978). As a result there was a decrease in bloom events from the
1970s to 1990s after reduction targets were generally met. The return
of algal blooms in 1995 was primarily composed of the dominant
toxic genus,Microcystis and was spurred by an increase in soluble reac-
tive phosphorus fromagricultural runoff from theMaumee River aswell
resuspension of sediment during extreme wind events (Brittain et al.,
2000; Vanderploeg et al., 2001). Microcystis is a buoyant species
known to form large mats of ‘scum’ during calm wind conditions,
warmer waters (above 15C) and high light availability (Davis et al.,
2009, 2015). Scum events were highly visible in many of the
hyperspectral images andwere an integral part of the earlywarning de-
tection system during repetitive weekly flights over the municipal
water intake locations. However not all cyanobacteria form surface
scums and mapping their distribution is important for stakeholders in-
terested in bloom extent within the western basin of Lake Erie. Flying
the Resonon Pika II Hyperspectral imager on a weekly basis has pro-
vided the coverage needed to monitor the extent and frequency of
cyanoHABS in Lake Erie.

Resonon Pika II hyperspectral imager and manned aircraft flights

In recent decades, remote detection of cyanoHABs has improved
with technological advances in the use of airborne hyperspectral
imagers (HSI) (Beck et al., 2017; Kudela et al., 2015; Kutser et al.,
2001; Lekki et al., 2017, Ortiz et al., 2017) andwith the current develop-
ment of a set of new satellites for hyperspectral detection (HYSPRI and
PACE). NOAA GLERL has flown a Resonon HSI for the past three years to
monitor cyanoHABs in the Great Lakes along with weekly shipboard
sampling and time-series buoy observations (Fig. 1).

The Pika II HSI developed by Resonon has a high signal-to-noise
ratio (maximum is 198, pers. comm. with Resonon), and a compact
camera that is 3.8 × 6.6 × 2.5 in. The HSI was mounted in a vibration
isolation pod that was bolted to a camera port on the underside of a
single engine Cessna Centurion along with a GPS/IMU, data acquisition
computer, and data storage drive and data readout. The Pika II HSI has
240 spectral bands from 400 to 900 nm and a typical spatial resolution
of 1 m depending on the flight altitude. Altitudes that were typically
flown over the Great Lakes were between 900 and 1700 m which re-
sulted in a typical swath width of 640 to 2100 m. The data was written
to the storage drive approximately every 650 megabytes at a typical
swath length of 2100 m and each flight typically collected 350 giga-
bytes of data. This data was processed with Resonon's proprietary soft-
ware, called Spectronon from raw to radiance image cubes. The
radiance cubes were then georeferenced in IDL based on the pitch,
roll and yaw of the aircraft and the GPS location referenced from the
aircraft to the location on the earth. These images were written to
geotiffs and Google KMZ and KML files for easy dissemination to the
user community and within an online web portal. The atmospheric
correction and internal sensor correction (de-striping and smile cor-
rection) algorithms are currently being tested on this data set. De-
striping is a method to remove stripes in the image from variable
gains in the sensors/camera retrieval and the smile correction is for
push-broom or line-scan cameras that have a ‘frown’ curve in the
spectra from the middle to outer edges of the image. For the purpose
of the preliminary analysis, an algorithm that ignored the top of the at-
mosphere effects was applied and solar zenith angle, solar atmo-
spheric radiances and earth-sun distances were not used. Top of
atmosphere in this case is the height of the aircraft that the sensor
was flown on over Lake Erie.

The manned aircraft flights were flown out of the Ann Arbor from
August until November in 2015, May through October during 2016
and May through November in 2017 by Aerodata Associates, Inc.
There was a total of eight flights during 2015, 31 during 2016 and
27 during 2017. Weekly flights were conducted over the western
basin of Lake Erie and biweekly over Saginaw Bay during each of the
three years.

Cyanobacteria index applied to Resonon Pika II hyperspectral imagery

The cyanobacteria index (CI) determines the range from low to high
for the abundance of cyanobacteria (blue-green algae. This index has
been applied to satellite data in the past for the western Lake Erie HAB
Bulletin that has been distributed through NOAA's National Centers for
Coastal Ocean Science (NCCOS) twice weekly to forecast the blooms.
The CI (Wynne and Stumpf, 2015, Wynne et al., 2013, 2010, 2008)
was applied to the Resonon Pika II hyperspectral imagery after
converting the images to Rayleigh surface reflectance (rhos) by remov-
ing the blue sky effects from the raw radiance values, taking into ac-
count that the 681 nm band is readily available with hyperspectral
imagery that has 240 spectral bands and not with MODIS bands. The
681 band was the original band used MERIS based CI algorithm. Ray-
leigh surface reflectance is the reflectance of the surface of the water
plus the aerosols above, whereas typically surface reflectance (Rrs) is
used in remote sensing with the aerosols removed. The adjusted
MODIS CI was used on the MODIS imagery (Wynne and Stumpf,
2015). The CI is a spectral shape algorithm that takes advantage of the
reflectance peak in the 709 nm, red range that inherently is not influ-
enced by detrital pigments. Wynne et al. (2008) used this spectral
shape algorithm to distinguish cyanobacterial blooms from other algal
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Fig. 1. A map of Lake Erie and the buoy locations and Maumee and Detroit River locations. The dashed circle denotes the buoys analyzed, WE2, WE4 and WE8.
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blooms in the western basin of Lake Erie. They calculated the spectral
shape as:

SS λð Þ ¼ nLw λð Þ−nLw λ−ð Þ− nLw λþ� �
−nLw λ−ð Þ� �

� λ−λ−ð Þ= λþ−λ−� �

SS is the spectral shape, nLw is the normalized water leaving radi-
ance, λ is 681 nm, λ + is 709 nm and λ- is 665 nm (Wynne et al.,
2008). Cyanobacterial bloomshave a negative SS(681) or a sag in the re-
flectance (Wynne et al., 2008) when normalizedwater leaving radiance
(nLW) falls below the baseline defined as a straight line drawn between
665 nm and 709 nm. A typical reflectance peak occurs at 681 nm but
due to the scattering processes of the gas vacuoles of Microcystis, the
scattering overwhelms the fluorescence and shifts the peak reflectance
to 700–710 nm (Gilerson et al., 2010; Wynne et al., 2008). This peak at
709 nm also has the potential to be influenced by sediment rich waters
that reflect in the red portion of the electromagnetic spectrum. For the
purposes of warning drinking water intake managers in a timely man-
ner and with a reliable method, the raw radiance values from the
Resonon Pika II were used with the same wavelengths as the Wynne
et al. (2008) methods since top of atmosphere was not of a concern
with lower altitude overflights without the full influence of the column
of atmospheric effects found with space-borne sensors. This was also
motivated by a desire to compare the weekly HAB bulletin processed
CI image with the hyperspectral data to see where the hypersepctral
data could fill in the gaps nearshore and underneath clouds. In addition
to the modified CI, maps of phytoplankton functional types beyond
cyanobacteria are under development to extend tomaps of other phyto-
plankton groups for water intake managers. This will account for the
high variability and optical complexity found in Lake Erie andwill be re-
ported in future manuscripts.
HAB bulletin contribution with airborne data

NCCOS distributes a twice-weekly HAB bulletin with cyanobacteria
bloom extent and intensity, that the western Lake Erie user community
relies on to track the bloomdevelopment. This is based on available satel-
lite imagery from either the Moderate Resolution Imaging Spectrometer
(MODIS) Terra or Aqua sensors or the newly launched, Sentinel-3
Ocean and Land Colour Instrument (OLCI) sensor. The CI is applied to
this imagery along with the forecasted position of the bloom using the
surface currents from the Great Lakes Coastal Forecasting System
(GLCFS). The Great Lakes are inherently cloud covered, even during the
summer months, averaging 60–70 cloud free images a year, limiting the
coverage to capture cyanoHAB events from satellites. Nearshore regions
are also difficult to remotely sense being confoundedwith strong bottom
reflectance signals close to the coast. Hyperspectral imagery has the abil-
ity to capture the shorelines in the context of 1 m scales compared to a
satellite that resolves the area at 30m to1 km. Satellites experience inher-
ent mixed-pixel issues in close proximity to the coast, where the likeli-
hood of this occurrence is less with the spatial scales from hyperspectral
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imagers. The additional advantage of flying the Resonon Pika II HSI is that
the airplane is able to fly under clouds and in those nearshore regions to
fill in the gaps in the satellite data with high-resolution airborne imagery.
The Resonon Pika II images are typically 1-m resolution depending on
flight altitude and objective lens used, whereas the MODIS imagery is 1-
km and Sentinel 3 OLCI is 300-meter resolution. The OLCI imagery was
compared to the hyperspectral imagery for this analysis. The
hyperspectral imagery was not binned up to the OLCI pixel size due to
the changing swath direction of the airplane imagery and because one
hyperspectral image fits almost precisely into three to four pixels of the
OLCI imagery and one pixel of theMODIS imagery. Fig. 2 shows the visual
differences in scales of spatial variability between MODIS imagery on the
left (1 km spatial resolution) and OLCI satellite imagery on the right
(300 m spatial resolution). Both the satellite and hyperspectral imagery
have been converted to the cyanobacteria indexwith recognizable differ-
ences in the relative colour scales when going from 1 km down to 1 m
spatial resolution in the hyperspectral imagery. It is important to note
that the hyperspectral imagery is obtained from top of atmosphere, Ray-
leigh surface reflectance (rho-s) and the satellite imagery CI is derived
from water-leaving radiance values (nLw). Furthermore, the
hyperspectral imagery was not binned up to the spatial resolution of
the satellite imagery with one hyperspectral image fitting within the
size of one pixel of MODIS imagery and will be a focus of future research
on the full length of the hyperspectral flight path.
Shipboard and buoy measurements

The Cooperative Institute for Great Lakes Research at the University
of Michigan partners with NOAA GLERL to collect shipboard
Fig. 2. The cyanobacteria index from low to high, applied to the satellite and hyperspectral im
Resonon Pika II hyperspectral imagery converted to the cyanobacteria index is overlaid on top
measurements weekly during the spring-summer bloom season in ad-
dition to helping to maintain the continuous buoy observations. There
are eight weekly sampling stations and continuous observation buoys
are located at four of these stations. Some of the weekly measurements
include chlorophyll concentration, phytoplankton cell counts, particu-
late and dissolved microcystin concentrations, extracted phycocyanin
and turbidity. For the purposes of this analysis, the phytoplankton cell
counts and the microcystin concentrations were compared to the
hyperspectral imagery when there was overlap with the sampling data.

Chlorophyll, cyanobacteria, and temperature sensors on buoys

Each of the buoys was equippedwith a XYLEM EXO2 sonde with sen-
sors mounted approximately 1 m below the water surface and sampling
at 15 min intervals. Sensors on each sonde included depth, temperature,
conductivity, pH, dissolved oxygen, turbidity, and fluorometers for
chlorophyll-a (Chla), and phycocyanin (bga) and fdom (fluorescence cor-
responding to dissolved organic matter). Sondes were serviced on an ap-
proximatelymonthly schedule, with pre and post deployment calibration
checks performed according to Xylem protocols (e.g. Chla and BGA were
checked against Rhodamine WT dilutions).

Sonde data were stored internally and by a connected Campbell Sci-
entific CR1000 data logger, and transmitted at 15-minute intervals to a
GLERL server for archiving and near real time web display.

Underway chlorophyll and blue-green algae sensors

Underway sampling was performed on the NOAA GLERL research
vessel R4108, a converted 41 ft USCG Utility boat. During underway
agery. MODIS is on the left and Sentinel-3 OLCI on the right from August 16, 2017. The
of the satellite data.
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sampling an EXO sonde with identical specifications and calibration
protocols as the buoy unit was mounted in a flow cell on the deck
with a volume of approximately 80 l. To minimize disturbance to the
water being sampled, a streamlined strut was mounted midship on
the port side of the boat approximately 20 cm away from the hull
with a forward facing intake port 0 .5m under the surface. A flexible im-
peller pump (Jabsco 11810-0003) attached to the strut pumped water
into a diffuser at the bottom of the flow cell and then overboard. The
flowrate from the pump while underway was approximately 40 l/min
yielding a residence time of approximately 120 s. Vessel speed during
underway sampling was approximately 5 m/s giving spatial residence
distances approximately 600 m.

Decorrelation scales

A decorrelation scale is the point at which a time series correlated
with itself, at a set lag measured in time or space, falls below a
predetermined threshold as either the zero crossing or the 95% confi-
dence interval, critical value = 0.361, for n = 60, two-tailed from
(Zar, 1999)). Decorrelation scales are widely used to determine the
scales of variability in biological and physical processes, providing infor-
mation on how these processes interact and drive ecosystem changes
(Abbott and Letelier, 1998; Denman and Abbott, 1994) This method is
transferrable to many types of time series from buoys, satellite and
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Fig. 3. A close-up version of thewestern basin of Lake Erie where theMaumee River is located, s
image. The spatial decorrelation scale is on the left for the Sentinel-3OLCI image values taken fro
right are from a line drawn down the middle of the hyperspectral image.
hyperspectral data sources and also bio-optical drifters. This has been
previously documented on the coast of California, recognizing the
change and decrease in the decorrelation scales from onshore to off-
shore and within upwelling retentive embayments (Vander Woude
et al., 2006). Decorrelation time scales have not been applied in the
Great Lakes and offer new insight for ecosystem modelers, ship board
survey schemes and the time scales that can contribute to bloom devel-
opment around drinkingwater intakes along the shorelines of the Great
Lakes. Decorrelation scales can also be lagged in space or across pixels,
as a time series correlated against itself that is derived from spatial
data, in cases where a line is drawn across the satellite or hyperspectral
image to form the time series. The same technique was applied in the
western basin of Lake Erie and spatial scales of cyanobacteria were ex-
plored during the bloom season by comparing satellite HAB bulletin
data and the hyperspectral flyovers.

Results

Spatial decorrelation scales from imagery

Satellite and hyperspectral imagery provide a synoptic view com-
pared to moored instrumentation with high-resolution temporal mea-
surements. The spatial variability between satellite (30 m–1 km) and
hyperspectral (~1 m) data has inherent differences because of the
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m the pixels located under the hyperspectral image. The spatial decorrelation scales on the
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spatial resolution or pixel size and the level of detail acquired from one
meter resolution hyperspectral images. Binning up to the satellite data
resolution is not possible due to swath width differences and resultant
directionality of the hyperspectral signal. Fig. 2 illustrates the strong
spatial variability in spatial scales in the western basin of Lake Erie
showing the overlap in CI values on August 16, 2017 with the
hyperspectral imagery flight lines and the MODIS (1 km) and OLCI
(300 m) satellite images, respectively. Using only the cyanobacteria
index, a line was drawn across an OLCI and Resonon hyperspectral
image from August 16, 2017 to create a time series of spatial values
within the extent of one Resonon hyperspectral image. Approximately
7 pixels (300 m) fit within the length one Resonon image (Fig. 3). The
middle line of the image was extracted from the hyperspectral CI im-
ages and the subsequent decorrelation scales were calculated. The spa-
tial decorrelation scale for the satellite image CI values was 300 m, the
size of one pixel, and the decorrelation scale for the hyperspectral
image was 335 m. In this case, on a day with a prevalent cyanobacteria
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Fig. 4. Time series from June 1 to July 31, 2017 and August 1 to September 31, 207 for buoys W
bloom, the variabilitywas captured from the satellite image in thismore
northern location of Fig. 2. By choosing a more southern location, in the
vicinity of buoy WE2, where the blooms were typically rapidly chang-
ing, hyperspectral imagery is more effective, with a decorrelation scale
of 8 m compared to the OLCI satellite image (decorrelation scale,
600 m). At a scale of 8 m, this would reflect process such as windrows,
Langmuir circulation or edge detection from the Maumee River plume
or the harmful algal bloom. The western basin of Lake Erie changes on
rapid space and time scales, and hyperspectral imagery is crucial to cap-
turing variability related to surface bloom patchiness and wind-driven
mixing events.

Temporal decorrelation and cross correlation scales at the buoys

Temperature is also a key driver in cyanoHABs growth and was also
evaluated against the scales of variability for the cyanobacteria. There
was a peak in temperature around July 15, 2017 and a peak in
WE2

WE4

WE8

August and September, 2017 

E2, WE4 and WE8. Blue is temperature, red is chlorophyll and green is blue-green algae.
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cyanobacteria from the August 15th to August 30th, depending on the
buoy location at WE2, WE4 or WE8 (Fig. 4). Chlorophyll peaks earlier
in the season at WE2 and WE8. Each of these buoys is situated in a di-
verse biological and physical environment. The time scales from the
decorrelations scale analysis are on a range of 4–13 days for tempera-
ture, chlorophyll and cyanobacteria depending on the buoy's location
(Fig. 5) and vary from site to site based on the chemical, biological and
physical controls at each buoy location. There is an important dissimi-
larity in the decorrelation scales during the June to July months,
cyanobacteria and chlorophyll are closely related with each other with
temperature loosely following the same scale. As the time series
June and July, 2017 

Temperature = 7 days
Chlorophyll = 4 days
Cyanobacteria = 5 days

Temperature = 6 days
Chlorophyll = 8 days
Cyanobacteria= 4 days

Temperature  = 6 days
Chlorophyll = 13 days
Cyanobacteria = 13 days

Fig. 5. Autocorrelation scales with decorrelation scales as when the curves reach the 95% confid
the right. The decorrelation scales are listed in each box for buoys WE2, WE4 and WE8. Tempe
transitions into August and September, the autocorrelation scales devi-
ate between chlorophyll and cyanobacteria with much shorter time
scales for chlorophyll and longer time scales for temperature and
cyanobacteria (from 5 to 11 days) during August to September. This di-
rectly relates to the cross-correlation scales from each of the buoys for
the same time periods (Fig. 6) with temperature leading the
cyanobacteria signal. With the greatest interest being cyanobacteria,
this time series is autocorrelated with temperature to represent the re-
lationship between biological and physical processes. The maximum
correlation of cyanobacteria to temperature is a point of interest to ex-
amine how long it takes for these two parameters to reach maximum
WE2

WE4

WE8

August and September, 2017 

Temp erature = 10 days
Chlorophyll = 4 days
Cyanobacteria = 11 days

Temperature = 10 days
Chlorophyll = 4 days
Cyanobacteria = 5 days

Temperature = 10 days
Chlorophyll = 4 days
Cyanobacteria= 10 days

ence interval for June 1 to July 31, 2017 on the left and August 1 to September 31, 2017 on
rature (blue), Chlorophyll (red), Blue-green algae (green).
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Fig. 6. Cross-correlation scales for blue-green algae versus temperature with the
decorrelation scale labeled on the x-axis. This is only for the August–September period.
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correlation. The shortest lag atWE4 occurs during both 60-day time se-
ries and the longest at WE2. These lags are highly dependent on physi-
cal, chemical and biological processes in the vicinity of each buoy.

Spatial and temporal decorrelation scales of shipboard mapping during
NOAA alliance for coastal technology survey

During the NOAA Alliance for Coastal Technology Survey on August
16, 2017 the underway sampling systemwasused tomeasured temper-
ature, chlorophyll and cyanobacteria. Fig. 7 shows the trajectory of the
ship and the cyanobacteria value overlaid onto the CI OLCI satellite
image from the same day. The shipboard survey was from 9:46 AM
EST until 4:13 PM EST and the discrepancies in the colour shading of
the CI values is due to the time the OLCI sensor was overhead at
10:46 AM EST, a snapshot of the total ship transit time. The measure-
ments were continuous through a flow-through system for the ship-
board data and even though they spanned at a longer time period
than the satellite overpass, the comparison captures the important var-
iability seen in Lake Erie on short time scales. As has been demonstrated,
cyanobacteria biomass values can change within a very short period of
time. The time series from temperature, chlorophyll and cyanobacteria
(Fig. 8) show the fluctuation in the signal over the trajectory of the
ship and the calculated decorrelation scales are on the order 4–10 h
over the spatial scale. This was a typical diel cycle for this area for the
time period being sampled within the western basin on a relatively
calm day. These decorrelation scales importantly capture how the
bloomcan vary closely in termsof temperature (10h) and cyanobacteria
(9 h) on similar time and space scales in relation to chlorophyll (4 h) on
a shorter time scale. (Fig. 8).

Contribution to the EPA and weekly reports

NOAA GLERL flies over nearshore waters of Ohio and Michigan
weekly to provide cyanoHABs observations in the immediate vicinity
of water intakes unavailable from satellite imagery. This data was
newly published in a bulletin format in 2017 with the true-colour and
cyanobacteria index images over each of the water intakes and is pro-
vided to the Ohio EPA andwater intakemanagers. In addition to the sat-
ellite bulletin data, the hyperspectral imagery is key for nearshore areas
where there are concerns about inherent bottom reflectance issueswith
satellite data. Additionally, airborne hyperspectral data can be obtained
by flying underneath clouds where satellite data is not able to detect
cyanobacteria features near drinking water intakes. The time scales
and spatial variability has been documented over the past 3 years
with the capability of the hyperspectral sensor, adding additional infor-
mation to the HAB tracker (a three dimensional forecasting model).

Discussion

Lake Erie's recurring blooms of cyanobacteria pose potential health
risks that impact recreational and commercial users of the lake.
Wynne and Stumpf (2015) showed that the frequencymaps of biomass
over the past 13 years from satellite imagery (MERIS andMODIS) have a
strong difference between phosphorous loading from the Maumee ver-
sus theDetroit River (labeled on Fig. 1). This leads into the spatial differ-
ences seen between the decorrelation scales at the northern site (close
to the Detroit River) versus the southern site (by the Maumee River)
and the potential increase in spatial variability with lower spatial
decorrelation scales by theMaumee River. Wynne et al.(2015) also rec-
ognized that bloomsweremore frequent around theMaumee River dis-
charge area in the western basin, this was also evident with the CI
spatial decorrelation scale results where blooms are more likely to be
changing at different spatial scales due to nutrient input and physical
conditions. The spatial scales, otherwise known as patchiness, variation
extends from km to 1-meter streaks that are kms long as seen in the
hyperspectral imagery. (https://www.glerl.noaa.gov/res/HABs_and_
Hypoxia/airSatelliteMon.html).

In contrast, the temporal scales from the buoy locations showadvec-
tion of spatial scales past the sensor at the speed of horizontal currents
(pers. Mark Rowe). Rowe et al. (2016) also described the verticalmigra-
tion cyanobacteria that show a regular diel cycle of stratification of
blooms during the day to convection at night. To limit this variability,
a daily average eliminated this diel cycle to look at time scales of
bloom development on a 60-day time series. The 60-day time series of
chlorophyll and cyanobacteria buoy data represent the long-term evo-
lution of the cyanobacterial bloom in terms of growth and decay of
the phytoplankton overweekly time scales, at the initiation and senesce
of the blooms. When decorrelation scales are on the order of 4–13 days
for buoys located in the vicinity of the Maumee River where the bloom
ismore frequent, it becomes apparent that these time scales can be used
to understand sampling and surveying plans to best provide early
awareness of bloom events for stakeholders. At each of the buoy loca-
tions, there was also a significant interaction between the temperature
and biological parameters that were best interpreted using the cross-
correlation scales of the values. Depending on the proximity to theMau-
mee River, the cross-correlation peak was between 12 and 29 days for

https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/airSatelliteMon.html
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Fig. 7. The EXO blue-green algae data from the shipboard survey overlaid onto the Sentinel-3 OLCI image converted to the cyanobacteria index on August 16, 2017. The colour scale is
applied to the cyanobacteria index from low to high.
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cyanobacteria and temperature, changing drastically moving north-
wards towards the Detroit River. The combination of spatial and tempo-
ral scales from shipboard mapping adds a third way to analyze the
variability in Lake Erie and on hourly time scales. This is crucial informa-
tion for surveying and early-warning systems to determine the fre-
quency to sample and where to sample. This also solidifies the current
weekly sampling over the western basin of Lake Erie with bloom devel-
opment happening on decorrelation scales of 4–10 for cyanobacteria at
each of the buoys analyzed, the hourly information from the buoys that
aids in knowing the vertical and horizontal distribution of the blooms
(especially in the vicinity of drinking water intakes that are at depth),
and the spatial information needed synoptically from both satellite
data and hyperspectral data for different spatial scales of variability on
meter to km scales.

The next steps and future work under the Great Lakes Restoration
Initiative funding through the Environmental Protection Agency are to
have synoptic time and spatial scales of variability readily available to
municipalities and managers on a weekly basis as part of the product
distribution. Decorrelation scales will be calculated for buoys from the
previous month and for hyperspectral images over the drinking water
intakes that NOAA GLERL flies over every week. This resource is in-
credibly important to pinpoint and predict the timing synoptically
for managers that have limited budgets and are charged with main-
taining the safety of drinking water for those surround the Lake Erie
western basin.
Conclusion

This analysis from a variety of space-borne, airborne and in-water
sensors was an innovative approach to understanding the scales of var-
iability in the western basin of Lake Erie during cyanoHAB events. The
goal is to continue to use this network of sensors as a combined effort
to aid in the early detection of cyanoHABs, repeatability of reporting
how cyanoHABs change in time and space throughout the season, and
differences of scales of variability between season. The addition of re-
peated airborne flyovers of locations in the western basin of Lake Erie
(i.e. fly over the buoy locations 4–5 times within a day) will aid in un-
derstanding the spatial and temporal scales of variability on an hourly
time-scales throughout the season, providing daily timing of the maxi-
mum concentration of cyanoHABs at the surface to drinking water in-
take managers in the vicinity of their water intakes, possible timing of
horizontal migration of cyanoHABs and best-sampling practices for sci-
entists on the water.
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